

Middle East Technical University Informatics Institute

Predicting Alzheimer's Disease Stage Transformations 12 Months in Advance using 3D Convolutional LSTM based on 3D Magnetic Resonance Images

Advisor Name: Assoc. Prof. Dr. Yeşim AYDIN SON (**METU, Graduate School of Informatics, Medical Informatics**)

Student Name: Elifnur ERDEMİR (METU, Graduate School of Informatics, Medical Informatics)

January 2024

TECHNICAL REPORT METU/II-TR-2024-

Orta Doğu Teknik Üniversitesi Enformatik Enstitüsü

3D Manyetik Rezonans Görüntülerine Dayalı 3D Evrişimsel LSTM Kullanılarak Alzheimer Hastalığı Aşamasındaki Dönüşümlerin 12 Ay Önceden Tahmin Edilmesi

Danışman Adı: Doç. Dr. Yeşim AYDIN SON (ODTÜ, Bilişim Enstitüsü, Tıp Bilişimi)

Öğrenci Adı: Elifnur ERDEMİR (ODTÜ, Bilişim Enstitüsü, Tıp Bilişimi))

Ocak 2024

TEKNİK RAPOR ODTÜ/II-TR-2024-

REPORT DOCUMENTATION PAGE							
1. AGENCY USE ONLY (Internal Use)	2. REPORT DAT 25.01.2024	Е					
3. TITLE AND SUBTITLE Predicting Alzheimer's Disease Stage Transformations 12 Months in Advance using 3D Convolutional LSTM based on 3D Magnetic Resonance Images							
4. AUTHOR (S) Elifnur ERDEMİR	5. REPORT NUM METU/II-TR-202	IBER (Internal Use) 4-					
6. SPONSORING/ MONITORING AGENCY NAME(S) AND SIGNATURE(S) Medical Informatics Master's Program, Department of Health Informatics, Informatics Institute, METU							
Advisor: Assoc. Prof. Dr. Yeşim AYDIN SON	Signature:						
7. SUPPLEMENTARY NOTES							
8. ABSTRACT (MAXIMUM 200 WORDS) This study evaluates the ability to predict the transition from the healthy cognitive stage to the Alzheimer's stage using a 3D LSTM model. The model was trained on a data set created from MR images taken at different times in the ADNI database and its performance was evaluated using four consecutive 3D MR images. The results reveal that while the model highlights good specificity in recognizing healthy individuals, it shows low sensitivity and F1 score in predicting the transition from MCI to Alzheimer's. While the model can identify individuals remaining in the MCI stage with high sensitivity, it shows a decrease in precision and F1 score, indicating that there are false positives in this class. All in all, he study highlights the potential of the 3D LSTM model for early diagnosis of Alzheimer's disease, shedding light on future research in this field.							
9. SUBJECT TERMS Alzheimer's disease, mild cognitive impairment, early Conv LSTM, MR imaging, ADNI Database.	diagnosis, 3D	10. NUMBER OF PAGES 35					

LIST OF TABLES

1. INTRODUCTION	1
2. LITERATURE REVIEWS	3
3. MATERIALS AND METHODS	5
3.1 Dataset	5
3.1.1 The Alzheimer's disease neuroimaging initiative (ADNI)	5
3.1.2 Created ADNI Conversion Data Set	5
3.2 Preprocessing of MR Images	7
3.2.1 Converting MRI to 3D	7
3.2.2 Brain Extraction in 3D MRI Images	7
3.3 Model	9
4. RESULTS	12
5. DISCUSSION	16
REFERENCES	18
APPENDIX A	21

LIST OF FIGURES

Figure 1. Example of the ADNI database information	6
Figure 2. 3D rendered MRI image of the patient	8
Figure 3. The patient in which brain isolation was performed with FSL BET	8
Figure 4. Example visualization of 3D CNN ^[20]	9
Figure 5. LSTM structure ^[22]	10
Figure 6. Model loss graph	13
Figure 7. The confusion matrix	14
Figure 8. The normalized confusion matrix	14

LIST OF TABLES

Table 1. Comparison of Related Studies	4
Table 2. The model used for this study	11
Table 3. Data distrubution of the dataset	12
Table 4. Test results	15

1. INTRODUCTION

Alzheimer's disease (AD), the primary cause of dementia, is a growing global health problem affecting individuals and society [1]. AD is involved in 60 to 80 percent of all dementia cases. Alzheimer's is a progressive disease marked by memory loss, difficulty with tasks, language difficulties, disorientation, poor judgment, abstract thought problems, misplacement of objects, mood swings, and loss of motivation. In 2020, 42.3 million people worldwide were affected by Alzheimer's disease, and this number is predicted to reach 81.1 million in 2040 [2, 3]. The main risk factor for Alzheimer's disease is age. The incidence of the disease doubles every 5 years after the age of 65, and 1275 new cases are diagnosed annually per 100,000 people over the age of 65 [4]. The first case of AD was reported by Alois Alzheimer in 1907, and since then, our knowledge about the pathogenesis of AD and how the disease is conceptualized has increased, but there are still no disease-modifying treatments available [3]. Current treatments for AD, donepezil, galantamine, rivastigmine, and memantine, are only symptomatic and provide modest benefit. These treatments are not a cure for Alzheimer's disease; they can only temporarily slow the progressive symptoms of the disease [5]. Diagnosing Alzheimer's disease in its early stages may help these medications be more effective. Therefore, diagnosis of Alzheimer's disease at an early stage is very important. Mild cognitive impairment (MCI) represents the early, preclinical, transitional phase between healthy aging and AD and is a key stage at which it may be possible to delay progression to dementia [6]. Patients with MCI, particularly those with primary memory impairments, are significantly more likely to progress to probable AD, with an annual conversion rate of 10-15% [7]. Magnetic resonance imaging is an integral part of the clinical evaluation of patients with suspected AD and MCI. Several studies have shown that MRI estimates of tissue damage or loss in characteristically sensitive brain regions such as the hippocampus and entorhinal cortex predict the progression of MCI to AD [8].

This study aims to predict the transition from the healthy cognitive stage (MCI) to the mild cognitive stage (MCI) and the transition from MCI to AD 12 months in advance with sequential MRI for the early diagnosis of Alzheimer's disease. For the study, MRIs of patients taken at different times were selected from the ADNI database, and the ADNI transformation data set was prepared with subjects who were healthy and remained healthy at consecutive times, and subjects who were healthy but remained healthy. A 3D Convolutional LSTM model was created for each subject, trained on 3D MR images taken four consecutive times. To test this model, three consecutive 3D MRI images of the subjects were given, and it was determined whether they would be healthy or stay healthy in the next sequence, that is, 6 to 12 months later, whether they would be MCI and remain MCI, whether they would transition from healthy to MCI phase, or whether they would have MCI and turn into AD. An attempt was made to predict.

This report presents the model that predicts the transition from healthy to AD stages with a 3D LSTM model. The sections that form the basis of the study are:

1. Introduction: In this section, a broad background about AD and MCI is presented and basic concepts are defined. In addition, the purpose of the study is stated.

2. Literature Reviews: In this section, previous studies on the subject are summarized.

3. Materials and Methods: This section describes the database used and the data set created from this database. It presents the pre-processing steps for MRI in this dataset. It provides detailed information about the model. Finally, the test metrics of the model are explained.

4. Result: Test results of the model are shared.

5. Discussion and Future Works: Test results are evaluated in this section and future studies are presented.

2. LITERATURE REVIEWS

In the study by Feng et al. [9], 3D-CNN (3D convolutional neural network) and fully stacked bidirectional long short-term memory (FSBi-) obtained from magnetic resonance imaging (MRI) and positron emission tomography (PET) data were used for the diagnosis of Alzheimer's disease. A deep learning framework combining LSTM techniques has been developed. The study uses MRI and PET data from 93 patients with Alzheimer's disease (AD), 76 progressive mild cognitive impairment (pMCI), 128 stable mild cognitive impairment (sMCI), and 100 normal controls (NC) from the ADNI dataset. 3D-CNN was used to obtain feature maps from MRI and PET data. Then, these feature maps were processed with FSBi-LSTM to increase the performance of the model. As a result, the tests performed on the ADNI data set show that an average accuracy of 94.82% between AD and NC, 86.36% between pMCI and NC, and 65.35% between sMCI and NC was achieved. These results show that success has been achieved by surpassing similar algorithms in the literature. The study by Feng et al effectively classifies AD, pMCI, sMCI, and NC classes. However, the temporal changes of AD stages were not focused on, only classification was made.

Sevilla-Salcedo et al. [10] used SSHIBA (Structured Semi-supervised Hierarchical Bayesian) to predict the future evolution of individuals at risk of Alzheimer's disease. In their study, they used data showing the longitudinal progression of early MCI and AD in the TADPOLE Challenge dataset obtained from the ADNI database and published. Missing values were observed to be high in these data because not all variables were obtained at each visit and participants did not visit every 6 months. To overcome this problem, they developed a new Bayesian Variational inference framework that can simultaneously estimate missing values and combine information from different views.

As a result, using ventricular volume and ADAS score multimodally, AD progression 6 months ago was obtained with an MAE score of 3.407. This study predicts disease progression, like my study, but the temporal data does not include 3D MRI images and uses numerical values of ventricular volumes obtained from cross-sectional MRI images. Converting MR images to digital data is laborious and time-consuming, and I used 3D images in my study to avoid losing any cross-sections.

Tomassini and colleagues [11] have developed an end-to-end 3D ConvLSTM-based model designed to provide diagnosis of AD from full-resolution whole-brain MRI scans to enable the diagnosis of Alzheimer's disease. With their proposed model, it was applied to 427 full resolution whole brain MRI scans from OASIS and ADNI databases. First, the skull was removed, and the brain was extracted from the 3D MRI images obtained from two different databases, and then the images were aligned. The results show that the proposed model is successful in distinguishing AD from cognitively normal (CN) patients. 86% classification accuracy, 96% sensitivity, 88% f1-score and 93% AUC were achieved in the test data. Although a similar model was used in my study, LSTM was not used to learn the sections of 3D MR images, but to estimate the transformation in the disease stage by looking at historical information. The study by Tomassini et al. classifies only AD and healthy.

Studies involving deep learning models on 3D MRI are generally used for the binary classification of AD and normal, and these studies are summarized in Table 1.

	Image				
Study	Distribution	Method	AD/NC Classification		
	AD / NC		ACC (%)	SENS (%)	SPE (%)
[12]	97 / 119	3D DenseNet	88.9	86.6	90.8
[13]	299 / 330	3D CNN	93.2	95.0	89.8
[14]	319 / 324	Self-attention	98.0	97.7	98.2
[15]	188 / 209	2.5D CNN	79.90	84.00	74.80
[16]	476 / 705	ViT-Bi-LSTM	95.678	95.5	-

Table 1. Comparison of Related Studies

3. MATERIALS AND METHODS

3.1 Dataset

3.1.1 The Alzheimer's disease neuroimaging initiative (ADNI)

ADNI [17] is a comprehensive research initiative on Alzheimer's disease and related neurological disorders. This initiative focuses on supporting early diagnosis of disease, particularly using neuroimaging techniques such as magnetic resonance imaging (MRI). ADNI has created a comprehensive dataset that includes data from a variety of disciplines to understand the development of Alzheimer's disease and cognitive disorders. This dataset includes information from the clinical, neuropsychological, genetic, and imaging fields, providing researchers with valuable perspectives on disease progression and affected brain regions.

3.1.2 Created ADNI Conversion Data Set

The prepared dataset was created from image data provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI). Data was selected using the file containing information on all data from the ADNI database. Figure 1 shows some data in this file as an example. The month in which the MRI images of the subject with patient ID '011_S_0326' were taken, the date they were taken, the diagnosis made (CN: 1, MCI: 2, AD: 3) and whether there is a change in the stage of the disease are included. Accordingly, it can be information that this subject was in the MCI phase at the 12th, 18th and 24th months and passed to the AD phase at the 36th month. The data in the specified file was used as stated in the example, and the appropriate image data was selected and divided into 4 different classes for Created ADNI Conversion Data Set:

- 1. **CNtoCN:** Includes the subject's first, 6th month, 12th and 24th month MRI images. These 4 images belong to the CN phase.
- 2. **CNtoMCI:** Contains images of the subject's 3 consecutive CN stages and the 4th image belonging to the MCI stage.
- 3. **MCItoMCI:** Includes the first, 6th month, 12th month and 18th month images of the subject. These 4 images also belong to the CN phase.
- 4. **MCItoAD:** Contains images of 3 consecutive MCI stages of the subject and the AD stage in the 4th image.

Phase	PTID	VISCODE	VISDATE	DXCURREN	DXCONV
ADNI1	011_S_0326	m12	2007-04-05	2	ADNI1
ADNI1	011_S_0326	m18	2007-10-29	2	ADNI1
ADNI1	011_S_0326	m24	2008-04-04	2	ADNI1
ADNI1	011_S_0326	m36	2009-03-30	3	ADNI1
ADNI1	002_S_0295	m36	2009-05-26	1	0
ADNI1	002_S_0295	m48	2010-05-13	1	0

Figure 1. Example of the ADNI database information

Information about the created dataset is included in Appendix A. The "Image Data ID" column in this information indicates the unique ID of each image. The "Subject" column contains the individual's identifying information, and the "Group" column refers to the group in which the individual is located; for example, specified as "MCItoMCI". The "Sex" column indicating gender is designated as "F" (Female) or "M" (Male). The "Age" column contains the individual's age information, while the "Visit" column indicates the visit number. The "Acq Date" column, which indicates the "date on which the image was obtained", and the "Train/Test" column, which indicates the label indicating whether the data set will be used in the training or testing phase. All images are T1-weighted MRI in all examples. All image types are MPRAGE" and all samples are taken as "Original".

3.2 Preprocessing of MR Images

3.2.1 Converting MRI to 3D

MR images downloaded within the scope of the created data set are available as 2dimensional sequences in '.dcm' format under the MPRAGE protocol. For each image, the sequences were sorted, and the pixel arrays were combined to create a 3D volume of (128, 128, 128) dimensions. For these 3D images, they are saved in NIfTI format.

3.2.2 Brain Extraction in 3D MRI Images

Removing the skull from the image and isolating the brain in MRI images is an important step for brain analysis. Because removing other tissues can help make the results obtained with the deep learning-based model more specific and meaningful. In this study, FSL Brain Extraction Tool (BET) [18] was used for brain extraction from MR images. "FSL BET" (Brain Extraction Tool) is a tool used to isolate brain tissue from brain images. FSL (FMRIB Software Library) is a collection of tools and software used in neuroscience research. FSL was developed by a group at the University of Oxford called FMRIB (Functional Magnetic Resonance Imaging of the Brain). FSL contains a variety of tools and source code that neuroscientists can use for magnetic resonance imaging (MRI) and brain imaging analyses. The main function of BET is to identify brain tissue in a brain image and distinguish this tissue from other surrounding tissues. Figure 2 shows the 3D rendered MRI image of patient "002_S_4270" with "60581" image ID. Figure 3 shows the image of the same patient in which brain isolation was performed with FSL BET.

Figure 2. 3D rendered MRI image of the patient

Figure 3. The patient in which brain isolation was performed with FSL BET

3.3 Model

3D Convolutional Long Short-Term Memory (3D ConvLSTM) is a deep learning model used to process 3D volumetric data types by combining spatial and temporal features [19]. This model includes a combination of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) structures.

In 3D CNN, the convolution process captures local patterns by hovering the filters (kernel) over the input tensor. 3D CNNs consist of convolution layers followed by pooling layers to reduce their spatial size [20]. Figure 3 shows an example 3D volume and 2 3D kernels. S, filter by Equation 1; I, input tensor; W, H, D are filter sizes. This equation is the mathematical formulation of 3D convolution.

Figure 4. Example visualization of 3D CNN^[20]

$$(S * I)(x, y, z) = \sum_{i=0}^{W-1} \sum_{j=0}^{H-1} \sum_{k=0}^{D-1} I(x+i, y+j, z+k) \cdot S(i, j, k)$$
(Eq. 1)

The LSTM model can solve problems involving time series [21]. LSTM enables learning difference information in time series and detecting changes in temporal remote sensing data. The LSTM structure is shown in Figure 5. An LSTM cell is a recurrent neural network (RNN) unit designed to capture long connections over time. It consists of three gates (input, forget, exit) and a cell state. The forget gate of the LSTM cell is described in Equation 2, the input gate in Equation 3, the candidate cell state in Equation 4, the cell

state in Equation 5, the output gate in Equation 6, and the hidden state in Equation 7 [21, 22]. xt is input entry time at t; W0, Wf, Wi are weight matrices.

Figure 5. LSTM structure ^[22]

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$
(Eq. 2)

$$it = \sigma(W_i \cdot [h_t - 1, x_t] + b_i)$$
(Eq. 3)

$$\tilde{C}_t = \tanh(Wc \cdot [h_t - 1, x_t] + bc)$$
(Eq. 4)

$$Ct = ft \cdot Ct - 1 + it \cdot \tilde{C}_t \tag{Eq. 5}$$

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$
(Eq. 6)

$$h_t = o_t \cdot \tanh(C_t) \tag{Eq. 7}$$

In 3D ConvLSTM, 3D convolution layers are used to capture spatial features and LSTM cells are used to capture temporal dependencies. The 3D ConvLSTM cell processes 3D spatiotemporal data and combines 3D convolutional and LSTM operations. This combined equation is shown in Equation 8.

$$(S * I)(x, y, z, t) = \sum_{i=0}^{W-1} \sum_{j=0}^{H-1} \sum_{k=0}^{D-1} \sum_{l=0}^{T-1} I(x+i, y+j, z+k, t+l)$$
(Eq. 8)

In the study, 3D MR images from 4 different times were first passed through 3D convolution layers and their temporal dependencies were captured. Then, the temporal dependencies of images belonging to 4 different consecutive times were given as input to LSTM.

The model used for this study is shown in detail in Table 2. The input layer of 3D Conv LSTM receives 3D MRI images of size 128x128x128. 3D convolution layers were used to extract features of 3D MRI images. Normalization layers placed at the end of these layers were used to stabilize and accelerate the learning process. Convolution and normalization steps in successive time steps were performed with time-distributed layers. Dropout layers randomly close connections during training to prevent overfitting. LSTM layers use hidden states in successive time steps to store information on time series. A flattening layer is added to vectorize the LSTM output. Fully connected layers extract higher features and find the resulting class.

Layer (type)Output Shape		Number of Parameters
input_1 (InputLayer) (None, 128, 128, 128, 1)		0
conv3d (Conv3D)	multiple	55.312
batch_normalization	multiple	64
time_distributed	multiple	0
dropout	multiple	0
conv3d_1 (Conv3D)	multiple	13.856
batch_normalization_1	multiple	128
time_distributed_1	multiple	0
dropout_1	multiple	0
lstm (LSTM)	multiple	4.198.528
lstm_1 (LSTM)	multiple	8.320
time_distributed_2	multiple	0
flatten_1	multiple	0
dense	multiple	4.128
batch_normalization_2	multiple	128
dropout_2	multiple	0
dense_1	multiple	132

Table 2. The model used for this study

4. RESULTS

To train the model used in the study, a total of 564 3D MRI images of 141 different patients, at 4 different consecutive times, were used. These images were randomly divided into 80% training and 20% validation parts during the training phase. The number of patient distribution according to the classes mentioned in Table 4 is not equal, MCItoMCI class has quite a lot of data. Therefore, to balance the data, augmentation was applied to other classes until the amount of data in the MCItoMCI class was equal. 3D MR images were rotated at random angles, reflected on random axes, and augmented by changing the brightness and contrast settings. In addition, train operations were carried out with 200 epoch and 8 batch number values.For the test, 3 sequential MRI images of 24 patients in total, 5 from CNtoCN class, 5 from CNtoMCI class, 5 from MCItoAD class and 9 from MCItoMCI class, were used. In short, for train, the model was trained with 4 sequential images of a patient, and for test, 3 sequential images of 3 images without giving the 4th sequential image.

Class	CNtoCN	CNtoMCI	MCItoAD	MCItoMCI
Train	29	20	22	44
Test	5	5	5	9

Table 3. Data distrubution of the dataset

The model loss chart was used to examine the training and validation performance of the model. In this chart, train loss shows the loss values after each training round. The low loss indicates how well the model learns the training data. Validation loss shows the validation loss in each epoch against data that the model does not see. As the training loss decreases, the validation loss also decreases, which explains that the model has learned well. The loss graph obtained as a result of the model's experiment is shown in Figure 6. Five different metrics were used as performance criteria to evaluate the test results. Accuracy, which is the ratio of correctly predicted examples to all examples; sensitivity, which is the proportion of samples correctly classified as positive out of all samples labeled positive; specificity, which is the ratio of predicted negatives to true negative samples; precision, which is the proportion of samples actually classified as positive out of all samples predicted as positive; and F1 Score, which is the harmonic average of sensitivity values, are the test metrics used [23]. These metrics are found with the confusion matrix and Figure 7 shows the confusion matrix obtained as a result of the test and Figure 8 shows normalized confusion matrix. In addition, the values of the success metrics are presented in Table 4.

Figure 6. Model loss graph

Figure 7. The confusion matrix

Figure 8. The normalized confusion matrix

Table 4. Test results

Classes	Accuracy	Sensitivity	Specificity	Precision	F1 Score
CNtoCN	0.8750	0.6667	0.9444	0.8000	0.7272
CNtoMCI	0.7500	0.4285	0.8824	0.6000	0.5000
MCItoAD	0.7917	0.5000	0.8888	0.6000	0.5455
MCItoMCI	0.8333	1.0000	0.7894	0.5556	0.7143

If the metrics given for performance evaluation are analyzed, the CNtoCN class succeeds in correctly recognizing healthy individuals with a high specificity rate (94.44%). However, the sensitivity rate (66.67%) and F1 score (72.72%) are lower than other metrics, indicating that it tends to miss some healthy individuals. The CNtoMCI class has a low sensitivity rate (42.85%), thus achieving poor success in detecting mild cognitive impairment. The MCItoAD class sensitivity rate (50.00%) and F1 score (54.55%) are lower than other measures, indicating that it tends to miss the transition to Alzheimer's. MCItoMCI has a high sensitivity rate (100.00%) in correctly recognizing the class. However, the accuracy rate (55.56%) and F1 score (71.43%) are lower than other measures, indicating that this class tends to incorrectly classify some cases without mild cognitive impairment.

Overall accuracy is given in equation 9. Looking at the confusion matrix in Figure 6, the class to which 15 of the 24 test subjects belonged was found to be correct. In this case, using Equation 9, the total accuracy was found to be 62.5%.

$$Total\ accuracy\ = \frac{Total\ correct\ classification}{Total\ number\ of\ samples}\ =\ \frac{15}{24}$$
(Eq. 8)

5. DISCUSSION

In the study, a new data set was created from the ADNI database to predict the stages of AD disease 6 to 12 months in advance. The images in this dataset were first rendered three-dimensional and then isolated from the brain skull with the FSL BET tool. A 3D Convolutional LSTM model was created to predict time-varying 3D MRI data. In the data set containing CNtoCN, CNtoMCI, MCItoAD and MCItoMCI classes, CNtoCN, CNtoMCI, CNtoMCI were increased to the data number of MCItoMCI, which is the majority class during train operations. The model loss table created as a result of the training and validation stages is promising. Training and validation losses are initially high, meaning that the model cannot immediately learn certain patterns or relationships in the data set. The fact that the training loss decreases over time indicates that the model performs better and better on the training data. This reduction in training and validation losses reveals that the model has been optimized and is beginning to better understand more complex data structures.

While the model exhibits good specificity in recognizing individuals that remain healthy, the sensitivity and F1 score are lower, which may indicate that some healthy individuals will inadvertently change phase. Although the specificity rate is high, the low sensitivity and F1 score indicate a poor performance in predicting MCI stage from healthy. The model showed low sensitivity and F1 score for predicting the transition from MCI to AD, indicating that it tends to miss the transition to AD. Although the model finds MCI remaining subjects with high sensitivity, the precision and F1 score are low, indicating that there are false positives in the class.

Model performance may depend on the quality and variety of 3D MR images used. If there are under-represented cases or variations in the data set, the model may not learn these cases correctly. The data in the MCItoMCI class is the majority, minority classes have been amplified. However, real data may not be as effective as real data for training the model. The architectural parameters of the 3D Convolutional LSTM model, that is, factors such as the number of layers, filter sizes, and learning rate, determine the model's ability to learn and generalize the data. The model could not be deepened much due to limited GPU access, which may have negatively affected model performance.

As a result, the challenging task of predicting conversions to the AD stage from 3D MR images 12 months in advance with 62.5% total accuracy was attempted. The 62.5% accuracy value indicates an average performance and shows that promising results will be achieved with new studies on this challenging task.

REFERENCES

- Lane, C. A., Hardy, J., & Schott, J. M. (2018). Alzheimer's disease. European Journal of Neurology, 25(1), 59-70.
- [2] Alzheimer's Association. (2018). 2018 Alzheimer's disease facts and figures. Alzheimer's Dementia, 14(3), 367–429.
- [3] Patterson, C. (2018). World Alzheimer Report 2018-the State of the Art of Dementia Research: New Frontiers. London, U.K.: Alzheimer's Disease International.
- [4] Masters, C. L., Bateman, R., Blennow, K., Rowe, C. C., Sperling, R. A., & Cummings, J. L. (2015). Alzheimer's disease. Nature Reviews Disease Primers, 1(1), 1-18.
- [5] Di Santo, S. G., Prinelli, F., Adorni, F., Caltagirone, C., & Musicco, M. (2013). A meta-analysis of the efficacy of donepezil, rivastigmine, galantamine, and memantine in relation to the severity of Alzheimer's disease. Journal of Alzheimer's Disease, 35(2), 349-361.
- [6] Anderson, N. D. (2019). State of the science on mild cognitive impairment (MCI). CNS Spectrums, 24(1), 78-87.
- [7] Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303–308.
- [8] Frisoni, G. B., Fox, N. C., Jack Jr, C. R., Scheltens, P., & Thompson, P. M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6(2), 67-77.
- [9] Feng, C., Elazab, A., Yang, P., Wang, T., Zhou, F., Hu, H., ... & Lei, B. (2019). Deep learning framework for Alzheimer's disease diagnosis via 3D-CNN and FSBi-LSTM. IEEE Access, 7, 63605-63618.

- [10] Sevilla-Salcedo, C., Imani, V., Olmos, P. M., Gómez-Verdejo, V., Tohka, J., & Alzheimer's Disease Neuroimaging Initiative. (2022). Multi-task longitudinal forecasting with missing values on Alzheimer's disease. Computer Methods and Programs in Biomedicine, 226, 107056.
- [11] Tomassini, S., Falcionelli, N., Sernani, P., Müller, H., & Dragoni, A. F. (2021, June). An end-to-end 3D ConvLSTM-based framework for early diagnosis of Alzheimer's disease from full-resolution whole-brain sMRI scans. In 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS) (pp. 74-78). IEEE.
- [12] Liu, M., et al. (2020). A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease. Neuroimage, 208, 116459. doi: 10.1016/J.NEUROIMAGE.2019.116459.
- [13] Li, J., et al. (2022). 3-D CNN-Based Multichannel Contrastive Learning for Alzheimer's Disease Automatic Diagnosis. IEEE Trans Instrum Meas, 71. doi: 10.1109/TIM.2022.3162265.
- [14] Zhu, J., et al. (2022). Efficient self-attention mechanism and structural distilling model for Alzheimer's disease diagnosis. Comput Biol Med, 147, 105737. doi: 10.1016/J.COMPBIOMED.2022.105737.
- [15] Lin, W., et al. (2018). Convolutional neural networks-based MRI image analysis for the Alzheimer's disease prediction from mild cognitive impairment. Front Neurosci, 12(NOV), 777. doi: 10.3389/FNINS.2018.00777/BIBTEX.
- [16] Akan, T., Alp, S., & Bhuiyanb, M. A. (2024). Vision Transformers and Bi-LSTM for Alzheimer's Disease Diagnosis from 3D MRI. arXiv preprint arXiv:2401.03132.
- [17] Jack Jr, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., ... & Weiner, M. W. (2008). The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 27(4), 685-691.
- [18] Smith, S. M. (2000). BET: Brain extraction tool. FMRIB TR00SMS2b, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, Oxford University, John Radcliffe Hospital, Headington, UK, 25.

- [19] Tomassini, S., Falcionelli, N., Sernani, P., Müller, H., & Dragoni, A. F. (2021, June). An end-to-end 3D ConvLSTM-based framework for early diagnosis of Alzheimer's disease from full-resolution whole-brain sMRI scans. In 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS) (pp. 74-78). IEEE.
- [20] Alakwaa, W., Nassef, M., & Badr, A. (2017). Lung cancer detection and classification with 3D convolutional neural network (3D-CNN). International Journal of Advanced Computer Science and Applications, 8(8).
- [21] Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation, 31(7), 1235-1270.
- [22] Smagulova, K., & James, A. P. (2019). A survey on LSTM memristive neural network architectures and applications. The European Physical Journal Special Topics, 228(10), 2313-2324.
- [23] Erdemir, E., & ERDA, Ç. B. (2023, November). Evaluation of Deep Learning Techniques in the Diagnosis of Polycystic Ovary Syndrome. In 2023 Medical Technologies Congress (TIPTEKNO) (pp. 1-4). IEEE.

APPENDIX A

Num	Image Data ID	Subject	Group	Sex	Age	Visit	Acq Date	Train/Test
1	1299155	002_S_4262	CNtoMCI	F	73	v05	4/19/2012	train
2	1397601	002_S_4262	CNtoMCI	F	75	v21	11/06/2013	train
3	1346110	002_S_4262	CNtoMCI	F	74	v11	10/25/2012	train
4	1259653	002_S_4262	CNtoMCI	F	73	v02	10/05/2011	train
5	1575600	002_S_4270	CNtoMCI	F	79	v41	12/04/2015	train
6	1346803	002_S_4270	CNtoMCI	F	76	v11	11/14/2012	train
7	1301756	002_S_4270	CNtoMCI	F	75	v05	5/04/2012	train
8	1398531	002_S_4270	CNtoMCI	F	77	v21	11/14/2013	train
9	192660	003_S_0908	MCItoMCI	F	64	m12	10/25/2007	test
10	1104926	003_S_0908	MCItoMCI	F	65	m18	5/06/2008	test
11	154988	003_S_0908	MCItoMCI	F	63	SC	9/12/2006	test
12	150620	003_S_0908	MCItoMCI	F	64	m06	4/23/2007	test
13	1112906	003_S_1122	MCItoMCI	F	78	m18	7/03/2008	train
14	l61258	003_S_1122	MCItoMCI	F	77	m06	7/20/2007	train
15	132044	003_S_1122	MCItoMCI	F	77	SC	12/06/2006	train
16	189028	003_S_1122	MCItoMCI	F	78	m12	1/30/2008	train
17	1499406	009_S_0842	CNtoMCI	М	79	v06	10/24/2011	test
18	1343566	009_S_0842	CNtoMCI	М	80	v11	11/01/2012	test
19	1448581	009_S_0842	CNtoMCI	М	82	v31	10/14/2014	test
20	1499395	009_S_0842	CNtoMCI	М	81	v21	10/28/2013	test
21	1346460	009_S_4337	CNtoMCI	М	73	v11	11/12/2012	train
22	1265542	009_S_4337	CNtoMCI	М	72	v02	11/07/2011	train
23	1308593	009_S_4337	CNtoMCI	М	73	v05	6/06/2012	train
24	1283124	009_S_4337	CNtoMCI	М	72	v04	2/06/2012	train
25	1317454	009_S_4359	CNtoMCI	Μ	77	v05	7/23/2012	train
26	1358953	009_S_4359	CNtoMCI	М	78	v11	2/13/2013	train
27	1405453	009_S_4359	CNtoMCI	М	79	v21	1/16/2014	train
28	1633466	009_S_4359	CNtoMCI	М	81	v41	2/15/2016	train
29	1424035	009_S_4612	CNtoCN	F	71	v21	4/30/2014	test
30	1369843	009_S_4612	CNtoCN	F	70	v11	5/01/2013	test
31	1294222	009_S_4612	CNtoCN	F	69	v02	3/29/2012	test
32	1339678	009_S_4612	CNtoCN	F	69	v05	10/11/2012	test
33	17721	011_S_0022	CNtoMCI	М	63	SC	10/10/2005	train

34	178416	011_S_0022	CNtoMCI	М	65	m24	10/22/2007	train
35	I16534	011_S_0022	CNtoMCI	М	64	m06	4/20/2006	train
36	127231	011_S_0022	CNtoMCI	М	64	m12	10/19/2006	train
37	146971	011_S_0241	MCItoMCI	М	83	m12	3/26/2007	train
38	I11812	011_S_0241	MCItoMCI	М	82	SC	3/10/2006	train
39	1193550	011_S_0241	MCItoMCI	М	83	m18	10/04/2007	train
40	125290	011_S_0241	MCItoMCI	Μ	82	m06	9/27/2006	train
41	I49108	011_S_0326	MCItoAD	М	78	m12	4/11/2007	train
42	I100759	011_S_0326	MCItoAD	М	79	m24	4/04/2008	train
43	178179	011_S_0326	MCItoAD	М	79	m18	10/17/2007	train
44	1140635	011_S_0326	MCItoAD	М	80	m36	4/06/2009	train
45	I19199	011_S_0362	MCItoAD	F	72	m12	4/16/2007	test
46	I193571	011_S_0362	MCItoAD	F	72	m18	10/23/2007	test
47	1141285	011_S_0362	MCItoAD	F	74	m36	4/07/2009	test
48	1103555	011_S_0362	MCItoAD	F	73	m24	4/22/2008	test
49	198960	011_S_0856	MCItoMCI	М	62	m18	3/18/2008	train
50	176347	011_S_0856	MCItoMCI	М	61	m12	9/25/2007	train
51	I47529	011_S_0856	MCItoMCI	М	61	m06	3/29/2007	train
52	124603	011_S_0856	MCItoMCI	Μ	60	SC	9/15/2006	train
53	155687	011_S_1080	MCItoMCI	Μ	82	m06	5/23/2007	train
54	130924	011_S_1080	MCItoMCI	М	82	SC	11/22/2006	train
55	191098	011_S_1080	MCItoMCI	М	83	m12	12/05/2007	train
56	I109706	011_S_1080	MCItoMCI	Μ	83	m18	6/13/2008	train
57	1239736	011_S_4075	CNtoCN	М	73	v02	6/10/2011	train
58	1272099	011_S_4075	CNtoCN	М	74	v05	12/14/2011	train
59	1311933	011_S_4075	CNtoCN	М	75	v11	6/22/2012	train
60	1375671	011_S_4075	CNtoCN	М	75	v21	6/07/2013	train
61	1642405	012_S_4026	CNtoCN	Μ	76	v21	6/10/2013	train
62	1238532	012_S_4026	CNtoCN	М	74	v02	5/26/2011	train
63	1308385	012_S_4026	CNtoCN	М	75	v11	6/05/2012	train
64	1274422	012_S_4026	CNtoCN	М	74	v05	12/07/2011	train
65	156896	013_S_0325	MCItoAD	F	72	m12	6/12/2007	train
66	185153	013_S_0325	MCItoAD	F	72	m18	12/11/2007	train
67	1110198	013_S_0325	MCItoAD	F	73	m24	6/19/2008	train
68	135747	013_S_0325	MCItoAD	F	71	m06	12/14/2006	train
69	186472	013_S_1120	MCItoMCI	F	79	m12	12/20/2007	train
70	130339	013_S_1120	MCItoMCI	F	78	SC	11/22/2006	train
71	156188	013_S_1120	MCItoMCI	F	78	m06	6/05/2007	train

72	1112623	013_S_1120	MCItoMCI	F	79	m18	6/03/2008	train
73	165527	013_S_1186	MCItoMCI	М	84	m06	8/06/2007	train
74	190004	013_S_1186	MCItoMCI	М	84	m12	2/07/2008	train
75	137721	013_S_1186	MCItoMCI	М	83	SC	1/29/2007	train
76	1115301	013_S_1186	MCItoMCI	М	85	m18	8/04/2008	train
77	1421132	013_S_4580	CNtoCN	F	72	v21	4/21/2014	train
78	1340741	013_S_4580	CNtoCN	F	70	v05	10/15/2012	train
79	1368953	013_S_4580	CNtoCN	F	71	v11	4/23/2013	train
80	1296859	013_S_4580	CNtoCN	F	70	v02	4/05/2012	train
81	1300089	013_S_4616	CNtoCN	М	85	v02	4/19/2012	train
82	1368930	013_S_4616	CNtoCN	М	86	v11	4/25/2013	train
83	1343930	013_S_4616	CNtoCN	М	85	v05	10/25/2012	train
84	1421732	013_S_4616	CNtoCN	М	87	v21	4/24/2014	train
85	1365627	014_S_4576	CNtoCN	F	72	v11	4/04/2013	train
86	1289484	014_S_4576	CNtoCN	F	71	v02	3/08/2012	train
87	1336069	014_S_4576	CNtoCN	F	71	v05	9/20/2012	train
88	1419803	014_S_4576	CNtoCN	F	73	v21	4/09/2014	train
89	194330	016_S_0702	MCItoMCI	М	87	m18	2/27/2008	train
90	l41298	016_S_0702	MCItoMCI	М	86	m06	2/21/2007	train
91	181027	016_S_0702	MCItoMCI	М	86	m12	11/06/2007	train
92	1116560	016_S_0702	MCItoMCI	М	87	SC	7/24/2006	train
93	120362	016_S_0769	MCItoMCI	М	62	SC	8/02/2006	train
94	195313	016_S_0769	MCItoMCI	М	64	m18	3/03/2008	train
95	169413	016_S_0769	MCItoMCI	М	63	m12	8/20/2007	train
96	1434606	016_S_0769	MCItoMCI	М	62	m06	3/19/2007	train
97	128799	016_S_1028	MCItoMCI	F	77	SC	11/02/2006	train
98	1108499	016_S_1028	MCItoMCI	F	79	m18	5/29/2008	train
99	l61997	016_S_1028	MCItoMCI	F	78	m06	7/09/2007	train
100	183930	016_S_1028	MCItoMCI	F	78	m12	11/29/2007	train
101	l61593	016_S_1092	MCItoMCI	М	75	m06	7/16/2007	train
102	1434613	016_S_1092	MCItoMCI	М	75	m12	12/17/2007	train
103	132638	016_S_1092	MCItoMCI	М	74	SC	12/11/2006	train
104	1115201	016_S_1092	MCItoMCI	М	76	m18	7/31/2008	train
105	I31582	016_S_1117	MCItoMCI	F	69	SC	12/01/2006	test
106	166873	016_S_1117	MCItoMCI	F	70	m06	8/02/2007	test
107	185557	016_S_1117	MCItoMCI	F	70	m12	12/18/2007	test
108	1117199	016_S_1117	MCItoMCI	F	71	m18	8/28/2008	test
109	I62010	016_S_1121	MCItoAD	F	57	m06	6/28/2007	train

110	1114056	016_S_1121	MCItoAD	F	58	m18	7/21/2008	train
111	1132087	016_S_1121	MCItoAD	F	58	m24	12/15/2008	train
112	185146	016_S_1121	MCItoAD	F	57	m12	12/14/2007	train
113	1119317	016_S_1326	MCItoAD	М	68	m18	10/06/2008	train
114	199756	016_S_1326	MCItoAD	М	67	m12	3/27/2008	train
115	1174005	016_S_1326	MCItoAD	М	70	m36	5/12/2010	train
116	1140319	016_S_1326	MCItoAD	М	68	m24	4/01/2009	train
117	156470	018_S_0406	MCItoAD	М	79	m12	6/08/2007	train
118	1109859	018_S_0406	MCItoAD	М	80	m24	6/17/2008	train
119	188684	018_S_0406	MCItoAD	М	80	m18	1/25/2008	train
120	1148501	018_S_0406	MCItoAD	М	81	m36	7/08/2009	train
121	1134491	020_S_0883	CNtoMCI	F	78	m24	1/26/2009	train
122	154541	020_S_0883	CNtoMCI	F	77	m06	5/14/2007	train
123	186857	020_S_0883	CNtoMCI	F	77	m12	1/08/2008	train
124	1159693	020_S_0883	CNtoMCI	F	79	m36	11/20/2009	train
125	154534	020_S_0899	CNtoMCI	F	81	m06	5/14/2007	train
126	1134807	020_S_0899	CNtoMCI	F	82	m24	1/26/2009	train
127	1159479	020_S_0899	CNtoMCI	F	83	m36	11/16/2009	train
128	186866	020_S_0899	CNtoMCI	F	81	m12	1/09/2008	train
129	1413241	022_S_4196	CNtoCN	М	79	v02	9/13/2011	train
130	1337410	022_S_4196	CNtoCN	М	80	v11	9/28/2012	train
131	1775819	022_S_4196	CNtoCN	М	81	v21	10/11/2013	train
132	1294195	022_S_4196	CNtoCN	М	79	v05	3/27/2012	train
133	1166800	023_S_0061	CNtoMCI	F	81	m48	2/25/2010	train
134	1283530	023_S_0061	CNtoMCI	F	83	v06	2/07/2012	train
135	1217232	023_S_0061	CNtoMCI	F	82	m60	2/10/2011	train
136	1358377	023_S_0061	CNtoMCI	F	84	v11	2/06/2013	train
137	l67571	023_S_0126	MCItoAD	F	79	m18	8/14/2007	train
138	146263	023_S_0126	MCItoAD	F	79	m12	3/21/2007	train
139	194345	023_S_0126	MCItoAD	F	80	m24	2/29/2008	train
140	1137528	023_S_0126	MCItoAD	F	81	m36	3/03/2009	train
141	I42172	023_S_0217	MCItoAD	F	85	m12	3/02/2007	train
142	192505	023_S_0217	MCItoAD	F	86	m24	2/25/2008	train
143	120566	023_S_0217	MCItoAD	F	84	m06	8/15/2006	train
144	165540	023_S_0217	MCItoAD	F	85	m18	8/07/2007	train
1/15		022 6 0221		F	66	m18	10/09/2007	train
140	177180	023_5_0331	IVICITOAD		00	11110	10/03/2007	craini
146	I77180 I141446	023_S_0331 023_S_0331	MCItoAD	F	68	m36	4/10/2009	train

148	199775	023_S_0331	MCItoAD	F	67	m24	3/28/2008	train
149	I12726	023_S_0376	MCItoMCI	М	71	SC	4/03/2006	train
150	126699	023_S_0376	MCItoMCI	М	71	m06	10/19/2006	train
151	145804	023_S_0376	MCItoMCI	М	72	m12	3/20/2007	train
152	178564	023_S_0376	MCItoMCI	М	72	m18	10/25/2007	train
153	I49102	023_S_0388	MCItoAD	М	72	m12	4/13/2007	train
154	128991	023_S_0388	MCItoAD	М	72	m06	11/06/2006	train
155	179894	023_S_0388	MCItoAD	М	73	m18	10/30/2007	train
156	1102919	023_S_0388	MCItoAD	М	73	m24	4/16/2008	train
157	156614	023_S_0604	MCItoAD	М	88	m12	6/11/2007	train
158	184641	023_S_0604	MCItoAD	М	88	m18	12/11/2007	train
159	132982	023_S_0604	MCItoAD	М	87	m06	12/12/2006	train
160	1114830	023_S_0604	MCItoAD	М	89	m24	7/30/2008	train
161	187156	023_S_0625	MCItoMCI	М	78	m18	1/11/2008	train
162	160164	023_S_0625	MCItoMCI	М	77	m12	7/16/2007	train
163	I41733	023_S_0625	MCItoMCI	М	77	m06	2/27/2007	train
164	117447	023_S_0625	MCItoMCI	М	76	SC	6/23/2006	train
165	171798	023_S_0855	MCItoMCI	М	77	m12	9/05/2007	train
166	I23855	023_S_0855	MCItoMCI	М	76	SC	9/05/2006	train
167	144875	023_S_0855	MCItoMCI	М	76	m06	3/15/2007	train
168	199179	023_S_0855	MCItoMCI	М	77	m18	3/21/2008	train
169	199669	023_S_0887	MCItoAD	F	75	m18	3/27/2008	train
170	147603	023_S_0887	MCItoAD	F	74	m06	3/29/2007	train
171	1120100	023_S_0887	MCItoAD	F	76	m24	10/10/2008	train
172	176811	023_S_0887	MCItoAD	F	75	m12	10/04/2007	train
173	155383	023_S_1046	MCItoMCI	М	72	m06	5/29/2007	train
174	129027	023_S_1046	MCItoMCI	М	72	SC	11/06/2006	train
175	1107894	023_S_1046	MCItoMCI	М	73	m18	5/30/2008	train
176	181020	023_S_1046	MCItoMCI	М	73	m12	11/06/2007	train
177	133103	023_S_1126	MCItoMCI	Μ	80	SC	12/05/2006	train
178	1110039	023_S_1126	MCItoMCI	М	82	m18	6/18/2008	train
179	183576	023_S_1126	MCItoMCI	Μ	81	m12	11/28/2007	train
180	157304	023_S_1126	MCItoMCI	Μ	81	m06	6/19/2007	train
181	186730	023_S_1190	CNtoMCI	F	78	m12	1/08/2008	train
182	1166476	023_S_1190	CNtoMCI	F	80	m36	2/19/2010	train
183	1133821	023_S_1190	CNtoMCI	F	79	m24	1/15/2009	train
184	1224748	023_S_1190	CNtoMCI	F	81	v06	3/23/2011	train
185	I46218	027_S_0835	MCItoAD	М	73	m06	3/22/2007	train

186	1100312	027_S_0835	MCItoAD	М	74	m18	4/03/2008	train
187	1118251	027_S_0835	MCItoAD	М	75	m24	9/23/2008	train
188	175254	027_S_0835	MCItoAD	М	74	m12	9/26/2007	train
189	178587	027_S_1387	MCItoAD	М	86	m06	10/26/2007	train
190	1138337	027_S_1387	MCItoAD	М	88	m24	3/11/2009	train
191	1117856	027_S_1387	MCItoAD	М	87	m18	9/12/2008	train
192	197368	027_S_1387	MCItoAD	М	87	m12	3/13/2008	train
193	1305151	031_S_4032	CNtoCN	F	71	v11	5/17/2012	train
194	1371757	031_S_4032	CNtoCN	F	72	v21	5/09/2013	train
195	1234922	031_S_4032	CNtoCN	F	70	v02	5/09/2011	train
196	1270395	031_S_4032	CNtoCN	F	71	v05	12/05/2011	train
197	1274097	031_S_4218	CNtoMCI	М	81	v04	12/08/2011	train
198	1292597	031_S_4218	CNtoMCI	М	81	v05	3/23/2012	train
199	1255978	031_S_4218	CNtoMCI	М	81	v02	9/08/2011	train
200	1337984	031_S_4218	CNtoMCI	М	82	v11	10/02/2012	train
201	1362229	031_S_4496	CNtoCN	F	77	v11	3/07/2013	train
202	1282638	031_S_4496	CNtoCN	F	76	v02	2/03/2012	train
203	1325224	031_S_4496	CNtoCN	F	77	v05	8/20/2012	train
204	1414943	031_S_4496	CNtoCN	F	78	v21	2/20/2014	train
205	195921	032_S_0187	MCItoAD	М	79	m24	3/06/2008	train
206	126392	032_S_0187	MCItoAD	М	78	m06	10/16/2006	train
207	170210	032_S_0187	MCItoAD	М	79	m18	8/23/2007	train
208	I43265	032_S_0187	MCItoAD	М	78	m12	3/08/2007	train
209	1214810	032_S_1169	CNtoMCI	F	76	m48	1/26/2011	train
210	1134314	032_S_1169	CNtoMCI	F	74	m24	1/21/2009	train
211	1163225	032_S_1169	CNtoMCI	F	75	m36	1/11/2010	train
212	1282651	032_S_1169	CNtoMCI	F	77	v06	2/02/2012	train
213	167627	033_S_0725	MCItoAD	Μ	82	m12	8/10/2007	train
214	1115750	033_S_0725	MCItoAD	Μ	83	m24	8/06/2008	train
215	193512	033_S_0725	MCItoAD	М	83	m18	2/26/2008	train
216	I40132	033_S_0725	MCItoAD	М	82	m06	2/09/2007	train
217	19171	035_S_0033	MCItoMCI	М	83	SC	11/22/2005	train
218	157092	035_S_0033	MCItoMCI	М	85	m18	6/14/2007	train
219	133251	035_S_0033	MCItoMCI	М	85	m12	12/14/2006	train
220	I16328	035_S_0033	MCItoMCI	М	84	m06	5/30/2006	train
221	1488420	035_S_0156	CNtoMCI	М	80	v06	3/15/2012	test
222	1223709	035_S_0156	CNtoMCI	Μ	79	m60	3/03/2011	test
223	1361056	035_S_0156	CNtoMCI	Μ	81	v11	2/20/2013	test

224	1167167	035_S_0156	CNtoMCI	М	78	m48	2/22/2010	test
225	I11146	035_S_0204	MCItoMCI	F	71	SC	2/14/2006	test
226	I41873	035_S_0204	MCItoMCI	F	72	m12	2/22/2007	test
227	124834	035_S_0204	MCItoMCI	F	72	m06	9/21/2006	test
228	171149	035_S_0204	MCItoMCI	F	73	m18	8/30/2007	test
229	112334	035_S_0292	MCItoMCI	М	77	SC	3/22/2006	test
230	I81263	035_S_0292	MCItoMCI	М	78	m18	11/08/2007	test
231	154229	035_S_0292	MCItoMCI	М	78	m12	5/10/2007	test
232	125880	035_S_0292	MCItoMCI	М	77	m06	10/05/2006	test
233	1165551	035_S_0555	CNtoMCI	М	80	m36	1/29/2010	train
234	1145242	035_S_0555	CNtoMCI	М	80	m24	4/29/2009	train
235	184347	035_S_0555	CNtoMCI	М	78	m12	12/06/2007	train
236	1213220	035_S_0555	CNtoMCI	М	81	m48	12/13/2010	train
237	162330	035_S_0997	MCItoMCI	F	81	m06	6/28/2007	train
238	1113530	035_S_0997	MCItoMCI	F	82	m18	7/17/2008	train
239	130992	035_S_0997	MCItoMCI	F	81	SC	11/29/2006	train
240	188487	035_S_0997	MCItoMCI	F	82	m12	1/24/2008	train
241	I16408	036_S_0576	CNtoCN	М	78	SC	6/01/2006	test
242	I31746	036_S_0576	CNtoCN	М	78	m06	12/05/2006	test
243	1113341	036_S_0576	CNtoCN	М	80	m24	7/16/2008	test
244	156157	036_S_0576	CNtoCN	М	79	m12	6/06/2007	test
245	I18179	036_S_0656	MCItoMCI	М	83	SC	7/07/2006	train
246	160184	036_S_0656	MCItoMCI	М	84	m12	7/16/2007	train
247	187990	036_S_0656	MCItoMCI	М	84	m18	1/22/2008	train
248	137173	036_S_0656	MCItoMCI	М	83	m06	1/22/2007	train
249	189838	036_S_0673	MCItoMCI	М	80	m18	2/07/2008	test
250	139449	036_S_0673	MCItoMCI	М	79	m06	2/12/2007	test
251	I19499	036_S_0673	MCItoMCI	М	78	SC	7/21/2006	test
252	160539	036_S_0673	MCItoMCI	М	79	m12	7/18/2007	test
253	142212	036_S_0748	MCItoMCI	М	80	m06	3/02/2007	train
254	195874	036_S_0748	MCItoMCI	М	81	m18	3/07/2008	train
255	168311	036_S_0748	MCItoMCI	М	81	m12	8/17/2007	train
256	120342	036_S_0748	MCItoMCI	М	80	SC	8/10/2006	train
257	126898	036_S_0869	MCItoAD	F	85	m24	11/17/2008	train
258	182851	036_S_0869	MCItoAD	F	84	m12	11/20/2007	train
259	1104983	036_S_0869	MCItoAD	F	85	m18	5/08/2008	train
260	153760	036_S_0869	MCItoAD	F	84	m06	5/08/2007	train
261	156637	036_S_0945	MCItoMCI	М	73	m06	6/11/2007	train

262	1106788	036_S_0945	MCItoMCI	М	74	m18	5/27/2008	train
263	181253	036_S_0945	MCItoMCI	М	73	m12	11/09/2007	train
264	127443	036_S_0945	MCItoMCI	М	72	SC	10/25/2006	train
265	186621	036_S_1135	MCItoAD	Μ	77	m12	1/07/2008	train
266	1114072	036_S_1135	MCItoAD	М	77	m18	7/23/2008	train
267	1137683	036_S_1135	MCItoAD	М	78	m24	1/16/2009	train
268	158812	036_S_1135	MCItoAD	М	76	m06	7/09/2007	train
269	1137760	036_S_1240	MCItoAD	F	69	m24	3/05/2009	train
270	1117285	036_S_1240	MCItoAD	F	69	m18	8/29/2008	train
271	168281	036_S_1240	MCItoAD	F	68	m06	8/17/2007	train
272	1104606	036_S_1240	MCItoAD	F	68	m12	3/04/2008	train
273	1315729	036_S_4389	CNtoCN	М	82	v05	7/09/2012	train
274	1270466	036_S_4389	CNtoCN	Μ	81	v02	12/07/2011	train
275	1355909	036_S_4389	CNtoCN	Μ	82	v11	1/22/2013	train
276	1410160	036_S_4389	CNtoCN	М	83	v21	1/27/2014	train
277	1321504	036_S_4878	CNtoCN	F	73	v02	8/02/2012	train
278	1388167	036_S_4878	CNtoCN	F	74	v11	8/29/2013	train
279	1439207	036_S_4878	CNtoCN	F	75	v21	8/04/2014	train
280	1358106	036_S_4878	CNtoCN	F	73	v05	2/05/2013	train
281	1242120	037_S_4071	CNtoMCI	М	85	v02	6/28/2011	test
282	1412222	037_S_4071	CNtoMCI	М	85	v05	1/23/2012	test
283	1384204	037_S_4071	CNtoMCI	М	87	v21	8/02/2013	test
284	1315460	037_S_4071	CNtoMCI	М	86	v11	7/09/2012	test
285	1279148	037_S_4381	CNtoMCI	F	55	v02	1/18/2012	test
286	1356409	037_S_4381	CNtoMCI	F	56	v11	1/25/2013	test
287	1323138	037_S_4381	CNtoMCI	F	56	v05	8/10/2012	test
288	1417551	037_S_4381	CNtoMCI	F	57	v21	3/21/2014	test
289	184356	041_S_0282	MCItoMCI	М	74	m18	12/06/2007	train
290	138640	041_S_0282	MCItoMCI	М	73	m06	2/08/2007	train
291	113840	041_S_0282	MCItoMCI	М	72	SC	4/19/2006	train
292	153912	041_S_0282	MCItoMCI	М	73	m12	5/08/2007	train
293	153290	041_S_0314	MCItoAD	М	73	m12	5/02/2007	train
294	183882	041_S_0314	MCItoAD	М	74	m18	11/29/2007	train
295	1141930	041_S_0314	MCItoAD	М	75	m36	4/14/2009	train
296	1102583	041_S_0314	MCItoAD	М	74	m24	4/14/2008	train
297	178024	041_S_0549	MCItoMCI	М	70	m12	10/16/2007	train
298	148337	041_S_0549	MCItoMCI	М	70	m06	4/05/2007	train
299	I16934	041_S_0549	MCItoMCI	М	69	SC	6/13/2006	train

300	195527	041_S_0549	MCItoMCI	М	71	m18	3/05/2008	train
301	189002	041_S_0598	MCItoMCI	М	74	m18	1/30/2008	train
302	117116	041_S_0598	MCItoMCI	М	72	SC	6/16/2006	train
303	137796	041_S_0598	MCItoMCI	М	73	m06	1/30/2007	train
304	172962	041_S_0598	MCItoMCI	М	74	m12	9/12/2007	train
305	189201	041_S_0679	MCItoMCI	М	65	m18	1/31/2008	train
306	139044	041_S_0679	MCItoMCI	М	64	m06	2/09/2007	train
307	I19378	041_S_0679	MCItoMCI	М	63	SC	7/20/2006	train
308	167547	041_S_0679	MCItoMCI	М	64	m12	8/13/2007	train
309	1132134	041_S_0898	CNtoCN	F	85	m24	12/18/2008	train
310	184964	041_S_0898	CNtoCN	F	84	m12	12/13/2007	train
311	126562	041_S_0898	CNtoCN	F	83	SC	10/18/2006	train
312	154288	041_S_0898	CNtoCN	F	84	m06	5/11/2007	train
313	1111060	041_S_1010	MCItoAD	М	76	m18	6/25/2008	test
314	184151	041_S_1010	MCItoAD	М	75	m12	12/04/2007	test
315	1133432	041_S_1010	MCItoAD	М	77	m24	1/12/2009	test
316	155847	041_S_1010	MCItoAD	М	75	m06	6/04/2007	test
317	1153496	041_S_1425	MCItoAD	F	78	m24	8/19/2009	train
318	1115719	041_S_1425	MCItoAD	F	77	m12	8/07/2008	train
319	1191012	041_S_1425	MCItoAD	F	79	m36	8/16/2010	train
320	1136918	041_S_1425	MCItoAD	F	77	m18	2/23/2009	train
321	184916	051_S_1072	MCItoMCI	F	61	m12	12/12/2007	test
322	1113929	051_S_1072	MCItoMCI	F	62	m18	7/10/2008	test
323	158567	051_S_1072	MCItoMCI	F	61	m06	7/03/2007	test
324	130446	051_S_1072	MCItoMCI	F	60	SC	11/24/2006	test
325	133295	051_S_1131	MCItoMCI	М	87	SC	12/15/2006	train
326	1114307	051_S_1131	MCItoMCI	М	88	m18	7/24/2008	train
327	160289	051_S_1131	MCItoMCI	М	87	m06	7/16/2007	train
328	188184	051_S_1131	MCItoMCI	М	88	m12	1/23/2008	train
329	182922	057_S_0464	MCItoMCI	М	85	m18	11/21/2007	train
330	I15726	057_S_0464	MCItoMCI	М	83	SC	5/17/2006	train
331	157122	057_S_0464	MCItoMCI	М	84	m12	6/13/2007	train
332	138138	057_S_0464	MCItoMCI	М	84	m06	1/03/2007	train
333	123159	057_S_0779	CNtoMCI	М	80	SC	8/16/2006	train
334	172730	057_S_0779	CNtoMCI	М	81	m12	9/12/2007	train
335	1118511	057_S_0779	CNtoMCI	М	82	m24	9/17/2008	train
336	144810	057_S_0779	CNtoMCI	М	80	m06	3/14/2007	train
337	1101826	057_S_0839	MCItoAD	F	81	m18	4/09/2008	test

338	1121209	057_S_0839	MCItoAD	F	82	m24	10/15/2008	test
339	149581	057_S_0839	MCItoAD	F	80	m06	4/18/2007	test
340	176732	057_S_0839	MCItoAD	F	81	m12	10/03/2007	test
341	126145	057_S_0941	MCItoMCI	F	73	SC	10/11/2006	train
342	180060	057_S_0941	MCItoMCI	F	74	m12	10/31/2007	train
343	150813	057_S_0941	MCItoMCI	F	74	m06	4/25/2007	train
344	1103614	057_S_0941	MCItoMCI	F	75	m18	4/23/2008	train
345	180073	057_S_1007	MCItoAD	М	73	m12	10/31/2007	test
346	1125226	057_S_1007	MCItoAD	М	74	m24	11/05/2008	test
347	1103844	057_S_1007	MCItoAD	М	74	m18	4/23/2008	test
348	154113	057_S_1007	MCItoAD	М	73	m06	5/09/2007	test
349	1116087	057_S_1265	MCItoAD	F	84	m18	8/13/2008	train
350	190419	057_S_1265	MCItoAD	F	83	m12	2/13/2008	train
351	169965	057_S_1265	MCItoAD	F	83	m06	8/22/2007	train
352	1136399	057_S_1265	MCItoAD	F	84	m24	2/18/2009	train
353	116203	062_S_0578	CNtoCN	F	77	SC	5/30/2006	train
354	1109368	062_S_0578	CNtoCN	F	79	m24	6/11/2008	train
355	133942	062_S_0578	CNtoCN	F	78	m06	12/20/2006	train
356	156684	062_S_0578	CNtoCN	F	78	m12	6/11/2007	train
357	1118098	062_S_1182	MCItoMCI	F	78	m18	9/17/2008	train
358	169669	062_S_1182	MCItoMCI	F	77	m06	8/21/2007	train
359	192773	062_S_1182	MCItoMCI	F	77	m12	2/25/2008	train
360	136398	062_S_1182	MCItoMCI	F	76	SC	1/17/2007	train
361	1117968	062_S_1299	MCItoAD	М	73	m18	9/15/2008	train
362	173427	062_S_1299	MCItoAD	М	72	m06	9/17/2007	train
363	1138475	062_S_1299	MCItoAD	М	74	m24	3/11/2009	train
364	198100	062_S_1299	MCItoAD	М	73	m12	3/14/2008	train
365	1129904	067_S_0056	CNtoMCI	F	73	m36	12/09/2008	test
366	1279513	067_S_0056	CNtoMCI	F	76	v06	1/20/2012	test
367	1208165	067_S_0056	CNtoMCI	F	75	m60	12/10/2010	test
368	1401691	067_S_0056	CNtoMCI	F	78	v21	12/13/2013	test
369	1208198	067_S_0059	CNtoMCI	F	76	m60	12/10/2010	train
370	1401707	067_S_0059	CNtoMCI	F	79	v21	12/13/2013	train
371	1129892	067_S_0059	CNtoMCI	F	74	m36	12/09/2008	train
372	1279503	067_S_0059	CNtoMCI	F	77	v06	1/20/2012	train
373	171131	067_S_0077	MCItoMCI	М	81	m18	8/30/2007	train
374	142957	067_S_0077	MCItoMCI	М	81	m12	3/05/2007	train
375	I10323	067_S_0077	MCItoMCI	Μ	80	SC	12/21/2005	train

376	123247	067 S 0077	MCItoMCI	М	80	m06	8/21/2006	train
377	149698	067_S_0177	CNtoCN	F	76	m12	4/18/2007	train
378	134073	067_S_0177	CNtoCN	F	76	m06	12/22/2006	train
379	1104937	067_S_0177	CNtoCN	F	77	m24	5/07/2008	train
380	I11967	067_S_0177	CNtoCN	F	75	SC	3/10/2006	train
381	167643	067_S_0607	MCItoMCI	F	79	m12	8/13/2007	test
382	I17562	067_S_0607	MCItoMCI	F	78	SC	6/27/2006	test
383	1104552	067_S_0607	MCItoMCI	F	80	m18	5/02/2008	test
384	144712	067_S_0607	MCItoMCI	F	79	m06	3/13/2007	test
385	1286628	072_S_4103	CNtoCN	М	72	v05	2/27/2012	train
386	1386111	072_S_4103	CNtoCN	М	73	v21	8/19/2013	train
387	1245969	072_S_4103	CNtoCN	Μ	71	v02	7/20/2011	train
388	1325285	072_S_4103	CNtoCN	Μ	72	v11	8/21/2012	train
389	1372646	073_S_4739	CNtoCN	Μ	66	v11	5/16/2013	train
390	1433555	073_S_4739	CNtoCN	Μ	67	v21	6/30/2014	train
391	1304867	073_S_4739	CNtoCN	Μ	65	v02	5/16/2012	train
392	1346581	073_S_4739	CNtoCN	Μ	66	v05	11/14/2012	train
393	1435761	073_S_4762	CNtoCN	Μ	76	v21	7/15/2014	train
394	1581201	073_S_4762	CNtoCN	Μ	75	v11	9/04/2013	train
395	1362205	073_S_4762	CNtoCN	Μ	75	v05	3/06/2013	train
396	1314311	073_S_4762	CNtoCN	Μ	74	v02	5/24/2012	train
397	1277098	082_S_4090	CNtoCN	Μ	72	v05	1/04/2012	train
398	1384356	082_S_4090	CNtoCN	Μ	74	v21	8/05/2013	train
399	1241094	082_S_4090	CNtoCN	Μ	71	v02	6/20/2011	train
400	1315752	082_S_4090	CNtoCN	Μ	73	v11	7/09/2012	train
401	1334193	082_S_4208	CNtoCN	Μ	79	v11	9/12/2012	train
402	1289973	082_S_4208	CNtoCN	Μ	79	v05	3/12/2012	train
403	1253469	082_S_4208	CNtoCN	Μ	78	v02	8/30/2011	train
404	1389732	082_S_4208	CNtoCN	Μ	80	v21	9/11/2013	train
405	1257382	082_S_4224	CNtoCN	Μ	75	v02	9/21/2011	train
406	1339621	082_S_4224	CNtoCN	Μ	76	v11	10/10/2012	train
407	11043686	082_S_4224	CNtoCN	Μ	77	v21	10/23/2013	train
408	1298621	082_S_4224	CNtoCN	Μ	76	v05	4/18/2012	train
409	1350652	082_S_4339	CNtoCN	Μ	85	v11	12/10/2012	train
410	1265938	082_S_4339	CNtoCN	Μ	84	v02	11/09/2011	train
411	1307060	082_S_4339	CNtoCN	М	85	v05	5/30/2012	train
412	1404140	082_S_4339	CNtoCN	М	87	v21	1/07/2014	train
413	116244	099_S_0051	MCItoMCI	Μ	67	m06	5/31/2006	train

414	158400	099_S_0051	MCItoMCI	М	68	m18	7/03/2007	train
415	19066	099_S_0051	MCItoMCI	М	67	SC	11/15/2005	train
416	134266	099_S_0051	MCItoMCI	М	68	m12	12/26/2006	train
417	19071	099_S_0054	MCItoMCI	F	81	SC	11/16/2005	train
418	160398	099_S_0054	MCItoMCI	F	83	m18	7/17/2007	train
419	I18947	099_S_0054	MCItoMCI	F	82	m06	7/14/2006	train
420	134627	099_S_0054	MCItoMCI	F	82	m12	12/28/2006	train
421	I11780	099_S_0291	MCItoMCI	М	79	SC	3/09/2006	train
422	125371	099_S_0291	MCItoMCI	М	80	m06	9/29/2006	train
423	147662	099_S_0291	MCItoMCI	М	80	m12	4/02/2007	train
424	176878	099_S_0291	MCItoMCI	М	81	m18	10/05/2007	train
425	158464	099_S_0551	MCItoMCI	М	65	m12	7/03/2007	train
426	130570	099_S_0551	MCItoMCI	М	65	m06	11/28/2006	train
427	183687	099_S_0551	MCItoMCI	М	66	m18	11/29/2007	train
428	I15575	099_S_0551	MCItoMCI	М	64	SC	5/18/2006	train
429	152173	099_S_1034	MCItoMCI	М	76	m06	4/30/2007	train
430	183673	099_S_1034	MCItoMCI	М	76	m12	11/29/2007	train
431	1105114	099_S_1034	MCItoMCI	М	77	m18	5/12/2008	train
432	128429	099_S_1034	MCItoMCI	М	75	SC	11/02/2006	train
433	1420366	100_S_4469	CNtoCN	М	68	v21	4/16/2014	train
434	1366946	100_S_4469	CNtoCN	М	67	v11	4/11/2013	train
435	1289564	100_S_4469	CNtoCN	М	66	v02	3/08/2012	train
436	1341919	100_S_4469	CNtoCN	М	67	v05	10/23/2012	train
437	1836284	100_S_4512	CNtoMCI	F	73	v41	4/04/2017	train
438	1377054	100_S_4512	CNtoMCI	F	69	v11	6/17/2013	train
439	1423383	100_S_4512	CNtoMCI	F	70	v21	4/29/2014	train
440	1344440	100_S_4512	CNtoMCI	F	69	v05	11/06/2012	train
441	1106809	109_S_0950	MCItoMCI	М	75	m12	12/17/2007	train
442	127670	109_S_0950	MCItoMCI	М	74	SC	10/25/2006	train
443	1113378	109_S_0950	MCItoMCI	М	75	m18	7/15/2008	train
444	157465	109_S_0950	MCItoMCI	Μ	74	m06	6/19/2007	train
445	I106825	109_S_0967	CNtoCN	М	78	m12	12/17/2007	train
446	1140954	109_S_0967	CNtoCN	М	79	m24	12/03/2008	train
447	127640	109_S_0967	CNtoCN	М	77	SC	10/23/2006	train
448	157502	109_S_0967	CNtoCN	М	78	m06	6/19/2007	train
449	135526	109_S_1014	CNtoCN	F	85	SC	12/28/2006	train
450	1124674	109_S_1014	CNtoCN	F	86	m06	8/15/2007	train
451	1102982	109_S_1014	CNtoCN	F	86	m12	4/14/2008	train

452	1435190	109_S_1014	CNtoCN	F	87	m24	1/22/2009	train
453	135256	109_S_1114	MCItoMCI	F	78	SC	12/27/2006	test
454	163066	109_S_1114	MCItoMCI	F	79	m06	7/23/2007	test
455	188711	109_S_1114	MCItoMCI	F	80	m12	1/25/2008	test
456	1113368	109_S_1114	MCItoMCI	F	80	m18	7/15/2008	test
457	135276	109_S_1183	MCItoMCI	М	80	SC	1/03/2007	train
458	188699	109_S_1183	MCItoMCI	М	81	m12	1/25/2008	train
459	1124744	109_S_1183	MCItoMCI	М	82	m18	7/16/2008	train
460	1124701	109_S_1183	MCItoMCI	М	81	m06	7/20/2007	train
461	154710	114_S_0378	MCItoMCI	F	70	m12	5/11/2007	train
462	128134	114_S_0378	MCItoMCI	F	70	m06	10/26/2006	train
463	112868	114_S_0378	MCItoMCI	F	69	SC	4/04/2006	train
464	182406	114_S_0378	MCItoMCI	F	71	m18	11/02/2007	train
465	180580	114_S_0410	MCItoMCI	F	63	m18	11/01/2007	train
466	149966	114_S_0410	MCItoMCI	F	62	m12	4/23/2007	train
467	131047	114_S_0410	MCItoMCI	F	62	m06	11/29/2006	train
468	I13595	114_S_0410	MCItoMCI	F	61	SC	4/18/2006	train
469	157259	114_S_0458	MCItoMCI	F	84	m12	6/14/2007	train
470	I14779	114_S_0458	MCItoMCI	F	83	SC	5/09/2006	train
471	130624	114_S_0458	MCItoMCI	F	84	m06	11/27/2006	train
472	185410	114_S_0458	MCItoMCI	F	85	m18	12/04/2007	train
473	I31223	114_S_1103	MCItoMCI	М	83	SC	11/29/2006	train
474	1113665	114_S_1103	MCItoMCI	М	85	m18	7/16/2008	train
475	158596	114_S_1103	MCItoMCI	М	84	m06	7/03/2007	train
476	188579	114_S_1103	MCItoMCI	М	84	m12	1/15/2008	train
477	188411	114_S_1106	MCItoMCI	F	75	m12	12/18/2007	test
478	130410	114_S_1106	MCItoMCI	F	74	SC	11/21/2006	test
479	1111725	114_S_1106	MCItoMCI	F	76	m18	6/23/2008	test
480	156460	114_S_1106	MCItoMCI	F	75	m06	6/07/2007	test
481	188629	114_S_1118	MCItoMCI	М	84	m12	1/15/2008	train
482	I112079	114_S_1118	MCItoMCI	М	84	m18	6/27/2008	train
483	132597	114_S_1118	MCItoMCI	М	83	SC	12/08/2006	train
484	159318	114_S_1118	MCItoMCI	М	83	m06	7/11/2007	train
485	1114906	116_S_0649	MCItoAD	М	89	m24	7/30/2008	test
486	181064	116_S_0649	MCItoAD	М	88	m12	8/08/2007	test
487	141331	116_S_0649	MCItoAD	М	87	m06	2/21/2007	test
488	190817	116_S_0649	MCItoAD	М	88	m18	2/07/2008	test
489	1257312	116_S_4092	CNtoMCI	F	82	v04	9/21/2011	train

490	1241692	116_S_4092	CNtoMCI	F	82	v02	6/24/2011	train
491	1278836	116_S_4092	CNtoMCI	F	82	v05	1/13/2012	train
492	1322545	116_S_4092	CNtoMCI	F	83	v11	7/24/2012	train
493	1321271	116_S_4855	CNtoMCI	М	84	v02	7/20/2012	train
494	1384456	116_S_4855	CNtoMCI	М	85	v11	8/05/2013	train
495	1500525	116_S_4855	CNtoMCI	М	86	v21	8/26/2014	train
496	1360684	116_S_4855	CNtoMCI	М	84	v05	2/19/2013	train
497	1310245	130_S_4343	CNtoCN	М	80	v05	6/11/2012	train
498	1350050	130_S_4343	CNtoCN	М	81	v11	12/07/2012	train
499	1266217	130_S_4343	CNtoCN	М	80	v02	11/09/2011	train
500	1398576	130_S_4343	CNtoCN	М	82	v21	11/14/2013	train
501	1302617	130_S_4352	CNtoCN	М	84	v05	5/08/2012	test
502	1267711	130_S_4352	CNtoCN	М	84	v02	11/15/2011	test
503	1346745	130_S_4352	CNtoCN	М	85	v11	11/14/2012	test
504	1399997	130_S_4352	CNtoCN	М	86	v21	12/04/2013	test
505	1322742	135_S_4446	CNtoCN	F	69	v05	8/09/2012	train
506	1408196	135_S_4446	CNtoCN	F	71	v21	1/27/2014	train
507	1355689	135_S_4446	CNtoCN	F	69	v11	1/22/2013	train
508	1278378	135_S_4446	CNtoCN	F	68	v02	1/17/2012	train
509	1364577	135_S_4566	CNtoMCI	F	85	v11	3/27/2013	train
510	1335456	135_S_4566	CNtoMCI	F	84	v05	9/19/2012	train
511	1419206	135_S_4566	CNtoMCI	F	86	v21	4/07/2014	train
512	1288820	135_S_4566	CNtoMCI	F	84	v02	3/07/2012	train
513	123609	141_S_0717	CNtoCN	М	76	SC	8/27/2006	train
514	149388	141_S_0717	CNtoCN	М	77	m06	4/07/2007	train
515	174874	141_S_0717	CNtoCN	М	77	m12	9/21/2007	train
516	1119296	141_S_0717	CNtoCN	М	78	m24	9/19/2008	train
517	182715	141_S_0915	MCItoMCI	F	82	m12	11/17/2007	train
518	I105572	141_S_0915	MCItoMCI	F	82	m18	5/13/2008	train
519	126835	141_S_0915	MCItoMCI	F	80	SC	7/06/2006	train
520	156940	141_S_0915	MCItoMCI	F	81	m06	6/12/2007	train
521	156929	141_S_0982	MCItoMCI	F	81	m06	6/14/2007	train
522	181989	141_S_0982	MCItoMCI	F	81	m12	11/13/2007	train
523	130006	141_S_0982	MCItoMCI	F	80	SC	11/15/2006	train
524	1105540	141_S_0982	MCItoMCI	F	82	m18	5/14/2008	train
525	1105123	141_S_1004	MCItoMCI	F	76	m18	5/09/2008	train
526	157817	141_S_1004	MCItoMCI	F	75	m06	5/18/2007	train
527	182676	141_S_1004	MCItoMCI	F	75	m12	11/16/2007	train

528	I31418	141_S_1004	MCItoMCI	F	74	sc	12/02/2006	train
529	1323679	153_S_4151	CNtoCN	М	73	v11	8/14/2012	train
530	1287495	153_S_4151	CNtoCN	М	73	v05	3/01/2012	train
531	1389229	153_S_4151	CNtoCN	М	74	v21	9/10/2013	train
532	1251754	153_S_4151	CNtoCN	М	72	v02	8/18/2011	train
533	1401199	153_S_4372	CNtoCN	F	72	v21	12/11/2013	train
534	1269347	153_S_4372	CNtoCN	F	70	v02	11/30/2011	train
535	1350812	153_S_4372	CNtoCN	F	71	v11	12/11/2012	train
536	1306339	153_S_4372	CNtoCN	F	71	v05	5/24/2012	train
537	170033	941_S_1194	CNtoCN	М	85	m06	8/22/2007	train
538	137062	941_S_1194	CNtoCN	М	85	SC	1/20/2007	train
539	1100034	941_S_1194	CNtoCN	М	86	m12	3/25/2008	train
540	1136121	941_S_1194	CNtoCN	М	87	m24	2/14/2009	train
541	137076	941_S_1197	CNtoCN	F	82	SC	1/20/2007	test
542	171166	941_S_1197	CNtoCN	F	83	m06	8/30/2007	test
543	1137077	941_S_1197	CNtoCN	F	85	m24	2/24/2009	test
544	I106931	941_S_1197	CNtoCN	F	84	m12	5/21/2008	test
545	195515	941_S_1202	CNtoMCI	М	79	m12	2/28/2008	train
546	1136342	941_S_1202	CNtoMCI	М	80	m24	2/17/2009	train
547	137701	941_S_1202	CNtoMCI	М	78	SC	1/30/2007	train
548	170419	941_S_1202	CNtoMCI	М	78	m06	8/24/2007	train
549	1323049	941_S_4100	CNtoMCI	F	80	v11	8/09/2012	train
550	1307160	941_S_4100	CNtoMCI	F	79	v05	5/30/2012	train
551	1245771	941_S_4100	CNtoMCI	F	79	v02	7/18/2011	train
552	1389419	941_S_4100	CNtoMCI	F	81	v21	8/30/2013	train
553	1352741	941_S_4365	CNtoCN	М	81	v11	12/20/2012	test
554	1313274	941_S_4365	CNtoCN	М	81	v05	6/28/2012	test
555	1418940	941_S_4365	CNtoCN	М	83	v21	4/03/2014	test
556	1269096	941_S_4365	CNtoCN	М	80	v02	11/22/2011	test